Optothermal stability of large ULE and Zerodur mirrors

Thomas Brooks
NASA's Marshall Space Flight Center
Thomas.Brooks@NASA.gov
(256) 544 - 5596

Optothermal test of Zerodur Mirror

240.0

230.0

220.0

- 1.06m measured aperture
- 0.071m and 0.124m thick at the ID and OD respectively

Surface figure measurements tal 275, 250 and 230K.

Surface Figure Error (SFE) Sources

- Error due to Thermal Gradients
 - Thermal gradients cause mirror to bend
 - Caused by non-zero CTE and gradients
- Error due to Mount Effects
 - Mirror mount not athermalized, but very compliant flexures
 - Hexapod legs grow and bend mirror
- Error due to CTE inhomogeneity
 - CTE gradients + isothermal temperature change bend the mirror
- Test Setup Error

Zerodur SFE due to Mount

• RMS SFE = 0.81nm

The test was sub-aperture and only the area enclosed in the circle was measured

Zerodur Test Measured Data at 250km

M1- Top Hole	249.9				
M2 - North Hole	251.9				
M3 - South Hole	250.0				
M4 - 12:00	250.0				
M5 - 10:00	250.6				
M6 - 8:00	250.0				
M7 - 6:00	250.5				
M8 - 4:00	250.2				
M9 - 2:00	250.3				
M10- Top Edge	250.2				
M11 - 8:00 Edge	249.8				
M12 - 4:00 Edge	249.7				
M13 - Top Front	250.2				
M14 - 4:00 Front	250.0				
M33 - 8:00 (w/M6)	250.0				
M34 - 8:00 (w/M11)	250.2				
M35 - 8:00 (w/M2)	250.2				
M36 - 12:00 (w/M4)	249.8				
M37 - 4:00 (w/M8)	250.0				
M38 - 5:00	250.2				
M39 - 7:00	250.3				
30 - South Pad	250.5				
31 - Bottom Pad	250.6				
32 - North Pad	250.5				
15 - 12:00 Ring	251.4				
16 - Delta_3	250.5				
17 - Delta_2	250.5				
18 - Top Bracket	250.6				
19 - South Bracket	250.8				
20 - North Bracket	250.5				
21 - Strut R3	250.4				
22 - Strut L2	250.4				
23 - Strut L3	250.5				
24 - Strut L1	250.2				
25 - Strut R2	250.6				
26 - Strut R1	250.3				
27 - South Mount	250.7				
28 - Bottom Mount	250.7				
29 - North Mount	250.7				
40 - Delta_1	250.7				
(Kelvin)					

*Likely anomalous measurement ignored

Zerodur SFE due to Thermal Gradients

Potential Temperature Gradients

SFE due to T gradients

RMS SFE = 1.28nm

Test and Correlation Delta

Optothermal test of ULE Mirror

- 1.45m Zerodur Mirror
- 1.34m measured aperture
- 0.173m and 0.176m thick at the ID and OD respectively

- Surface figure measurements taken at 292, 275, 260, 250 and 230K.
- 3 cycles performed due to a stiction event

Hysteresis Compared to PCRs

- Computed Tomography (CT) Scan turned into Mirror FEM.
- Potentially Contact Ribs (PCRs) present near all of the hysteresis hotspots.
- Hypothesis: Rib-rib stiction is responsible for the hysteresis.

Rib to rib stiction

- Test Measurement Repeatability ~6nm
- Residual SFE < Test Repeatability: therefore, model considered correlated
- Rib-rib stiction is likely culprit of the hysteresis

ULE Mirror Cryo-Deformation

Large mount effects are evident. An attempt was made to separate mount effects and inhomogeneity effects and the results of that are shown below.

Comparing Zerodur & ULE Tests

Summary: The ULE mirror changed 0.27nm/°C (after mount effects are subtracted) and the Zerodur mirror changed 0.18nm/°C. These are the recommended values to use, and they are conservative.

Notes:

- 1. The ULE test includes a large contribution from the mount while the Zerodur test does not.
- The ULE mirror was made using an experimental process and may not be representative of all ULE mirrors.
- 3. The Zerodur mount is very compliant and may or may not be able to survive launch loads with appropriate vibration isolation and launch locks.
- 4. The repeatability of the Zerodur test was ~6nm and the repeatability of the ULE test was ~8nm.

Comparing Materials

Material	Measured Aperture (m)	Mirror Diameter (m)	Mirror Thickness at mirror ID/OD (m)	Change in RMS Surface per Temperature (nm / °C)
Zerodur	1.06	1.2	0.071/0.124	0.17†
ULE	1.34	1.45	0.173/0.176	0.48†
"CERAFORM" SiC	0.51	0.51	0.059	0.23*
"SuperSiC" SiC	0.25	0.25	0.035	0.105‡

- † Sensitivity estimated with a soak between 293 and 230K
- * Sensitivity estimated with a soak between 293 and 150K
- ‡ Sensitivity estimated with a soak between 293 and 196K

Notes:

- 1. The ULE test includes a large contribution from the mount while the Zerodur test does not.
- The ULE mirror was made using an experimental process and may not be representative of all ULE mirrors.
- 3. The Zerodur mount is very compliant and may or may not be able to survive launch loads with appropriate vibration isolation and launch locks.
- 4. The repeatability of the Zerodur test was ~6nm and the repeatability of the ULE test was ~8nm.

ULE Mirror Thermal Gradient Test

ULE Mirror Thermal Gradient Test

ULE Mirror Thermal Gradient Test

Gradient Test and Analysis Results

- This ULE mirror's temperature was elevated during manufacture which probably affected its CTE.
- RMS SFE matched by scaling the CTE of ULE to 81ppb/K.

Questions?

